

Biodiesel Process Overview

Daniel Geller – UGA Engineering Outreach http://outreach.engineering.uga.edu/

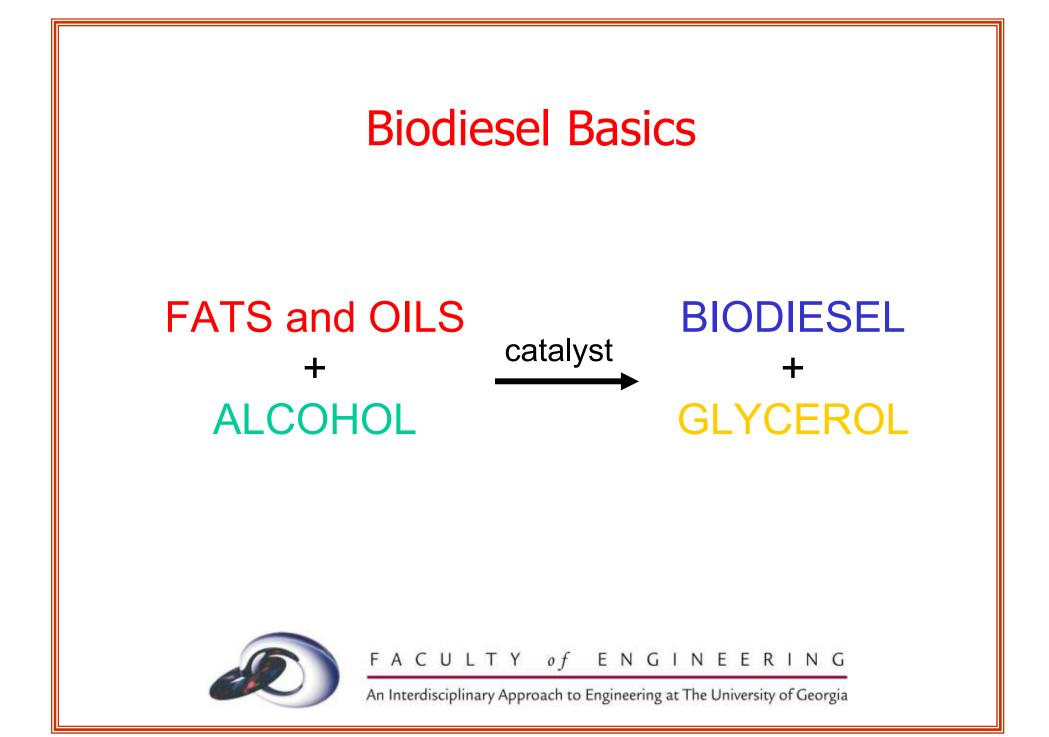
FACULTY of ENGINEERING

Biodiesel – an established technology

- Straight Vegetable Oils (SVO) will run in a diesel engine to a point.
- Injector coking caused by long term SVO use.
- Biodiesel Studied since 1980s solved issue of oil viscosity reduction in oils.

FACULTY of ENGINEERING

Grease Cars – Not a fleet option



- Grease cars use heated SVO to reduce viscosity
- Requires dual tanks/engine modification
- High maintenance
- Void warranties

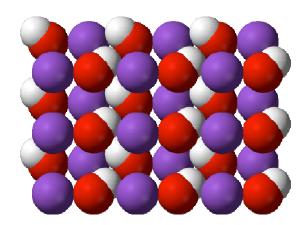
FACULTY of ENGINEERING

Feedstock

- Feedstock = Starting material used to make fuel
 - US: Soybean Oil
 - EU: Rapeseed non-food, industrial oil
 - GA: Poultry Fat
 - Municipality/School: Yellow Grease
 - On Farm/Co-op: Energy Crops
 - Oilseed Radish
 - Canola
 - Sunflower

FACULTY of ENGINEERING

Alcohol


- Methanol:
 - Preferred alcohol for the production of biodiesel
 - Relatively Inexpensive
 - Lower Viscosity Fuel
 - Flammable/Toxic
 - if you can smell it, it is doing damage
- Ethanol
 - Can be used but may complicate reaction
 - EXPENSIVE! Priced against gasoline

FACULTY of ENGINEERING

Catalyst

- Caustic Catalysts:
 - NaOH Sodium Hydroxide Lye
 - KOH Postassium Hydroxide
 - Flakes are better dissolve easier
 - Caustic = burns
- Sodium Methylate/Methoxide:
 - Premixed catalyst/alcohol
 - Must be diluted with alcohol to proper concentration

• Eliminates handling of solid catalyst

FACULTY of ENGINEERING

Standard Chemical Ratios

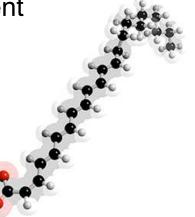
Run test batches on feedstock every time it changes to make sure you have the right recipe.

For fresh oil: 1L oil 200 mL Methanol 3.5g NaOH or 4.9g KOH (99%)

FACULTY of ENGINEERING

Feedstock Quality - Free Fatty Acids

- Byproduct of oxidative breakdown of fats and oils
- High levels:
 - Poor food quality = rancid
 - Poor fuel feedstock = soap formation
- Must be neutralized/removed before transesterification with caustic catalyst
- Neutralization is accomplished by adding excess catalyst to reaction.
- Catalyst concentration must be calculated.



FACULTY of ENGINEERING

Free Fatty Acids

Titration: Method for determining the amount of excess catalyst required to neutralize the free fatty acids.

- Can be done with simple equipment
 - Scale
 - Graduated Cylinder
 - Beaker
 - Buret
 - pH meter/indicator

- Excess catalyst is added to the amount required for fresh (0%FFA) oil
- High levels will result in poor quality fuel:
 - poor feedstock in = poor fuel out

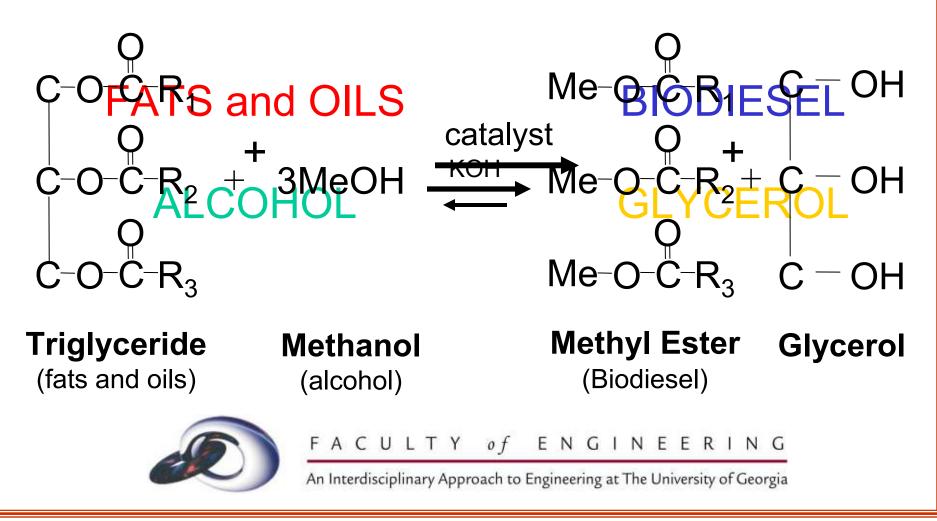
FACULTY of ENGINEERING

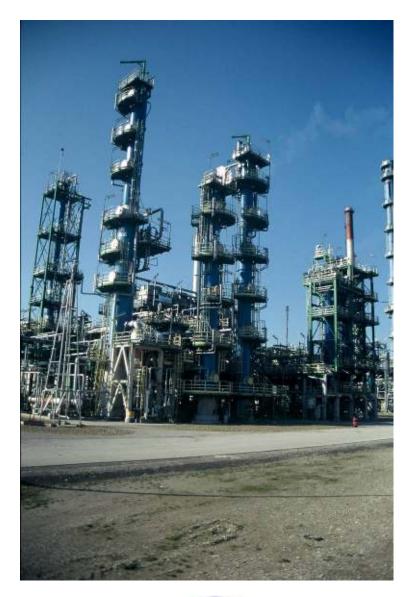
Free Fatty Acids

Free Fatty Acid Reduction = Feedstock Improvement

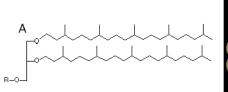
- Acid Esterification
 - Uses two step process
 - 1st step: Acid catalyst allows conversion of FFA to Biodiesel
 - 2nd step: Standard base catalyzed reaction
 - Complicated
 - Slow
- Fresh Feedstock Blending
 - Use clean oils to cut contaminated oils
 - Easy
 - Expensive

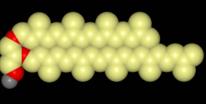
FACULTY of ENGINEERING

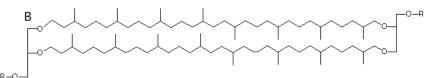

Chemical Quality - Water

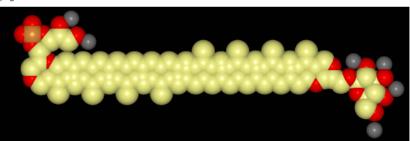

- Water contamination in chemical components
 - Feedstock
 - Settling time is the best solution to this problem
 - Emulsified feedstock cannot be used
 - Alcohol
 - Methanol is hydroscopic, absorbs water
 - Always seal containers
 - Catalyst
 - Potassium/Sodium Hydroxide absorb water
 - Keep Sealed

FACULTY of ENGINEERING

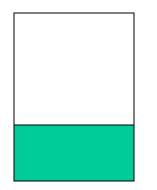

Sffiple to make right - Biodiesel is made by the transesterification of vegetable oils





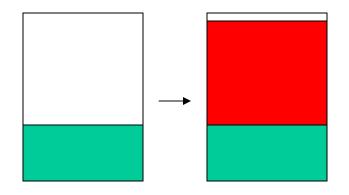

Biodiesel Production is CHEMICAL PRODUCTION ask yourself:

"Are you and your team qualified to make chemicals for the _____ industry?"



FACULTY of ENGINEERING

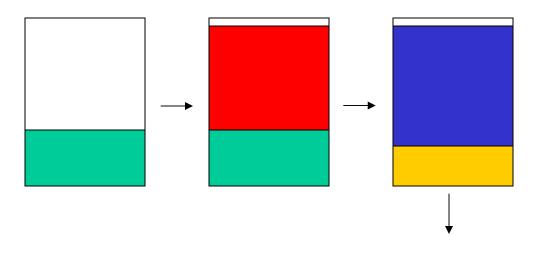
Simple to make



Tank 1 mix alcohol and catalyst

FACULTY of ENGINEERING

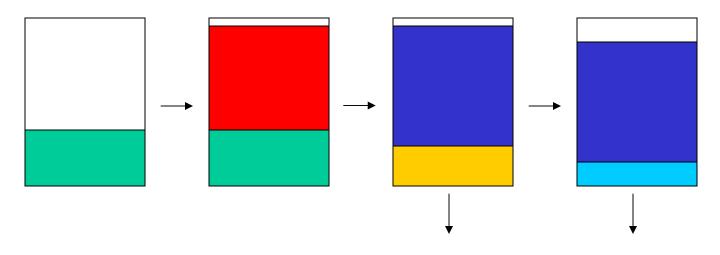
Simple to make



Tank 1 mix alcohol and catalyst Tank 2 add tank 1 mixture to oil. Mix and heat.

FACULTY of ENGINEERING

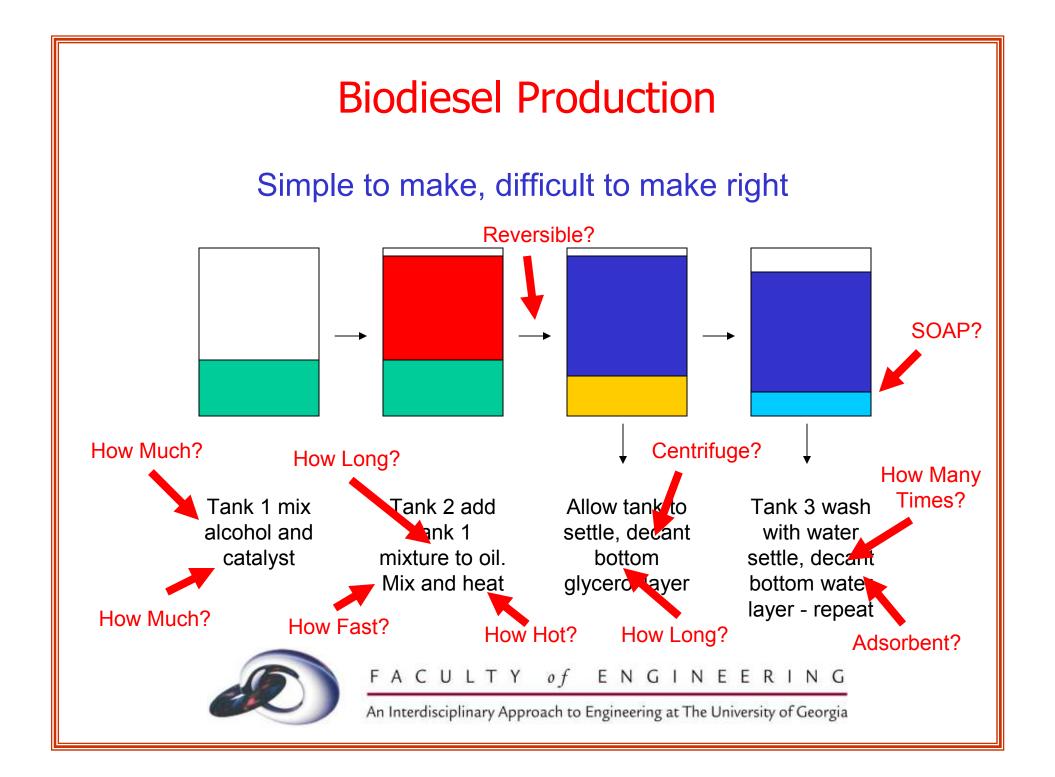
Simple to make



Tank 1 mix alcohol and catalyst Tank 2 add tank 1 mixture to oil. Mix and heat. Allow tank to settle, decant bottom glycerol layer

FACULTY of ENGINEERING

Simple to make



Tank 1 mix alcohol and catalyst Tank 2 add tank 1 mixture to oil. Mix and heat

Allow tank to settle, decant bottom glycerol layer Tank 3 wash with water settle, decant bottom water layer - repeat

FACULTY of ENGINEERING

The ASTM Specification – D6751

- Designed with OEMs to insure compatibility with modern diesel engines
 - Required for in-warranty vehicles
 - Required to collect federal/state tax credits/incentives
 - Mainly designed to insure fuel quality
 - Also influences feedstock selection

FACULTY of ENGINEERING

The ASTM Specification – D6751

SPECIFICATION FOR BIODIESEL (B100) – ASTM D6751-09

Nov. 2008

Blodiesel is defined as the mono alkyl esters of long chain fatty acids derived from vegetable oils or animal fats, for use in compression-ignition (diesel) engines. This specification is for pure (100%) biodiesel prior to use or blending with diesel fuel. #

Property	ASTM Method	Limits	Units
Calcium & Magneaium, combined	EN 14538	5 maximum	ppm (ug/g)
Flash Point (closed cup)	D 93	93 minimum	degrees C
Alcohol Control (One of the following mu	st be met)		
1. Methanol Content	EN14110	0.2 maximum	% volume
2. Flash Point	D93	130 minimum	Degrees C
Water & Sediment	D 2709	0.05 maximum	% vol.
Kinematic Viscosity, 40 C	D 445	1.9 - 6.0	mm²/sec.
Sulfated Ash	D 874	0.02 meximum	% mass
Sulfur 8 15 Grade 8 500 Grade	D 5453 D 5463	0.0015 max. (15) 0.05 max. (500)	% mass (ppm) % mass (ppm)
Copper Strip Corrosion	D 130	No. 3 meximum	
Cetane	D 613	47 minimum	
Cloud Point	D 2500	report	degrees C
Carbon Residue 100% sample	D 4530*	0.05 maximum	% mass
Acid Number	D 664	0.50 maximum	mg KOH/g
Free Glycerin	D 6584	0.020 maximum	% mass
Total Glycerin	D 6584	0.240 maximum	% mass
Phosphorus Contant	D 4951	0.001 meximum	% mass
Distillation, T90 AET	D 1160	360 maximum	degrees C
Sodium/Potassium, combined	EN 14538	5 maximum	ppm
Oxidation Stability	EN 14112	3 minimum	hours
Cold Sock Filtration For use in temperatures below -12	Annex to D6751 C Annex to D6751	360 maximum 200 maximum	seconds seconds

BOLD = BQ-9000 Critical Specification Testing Once Production Process Under Control

The carbon residue shall be run on the 100% sample.

A considerable amount of experience exists in the US with a 20% blend of biodiesel with 80% diesel fuel (820). Although biodiesel (8100) can be used, blends of over 20% biodiesel with diesel fuel should be evaluated on a case-by-case basis unit further experience is available.

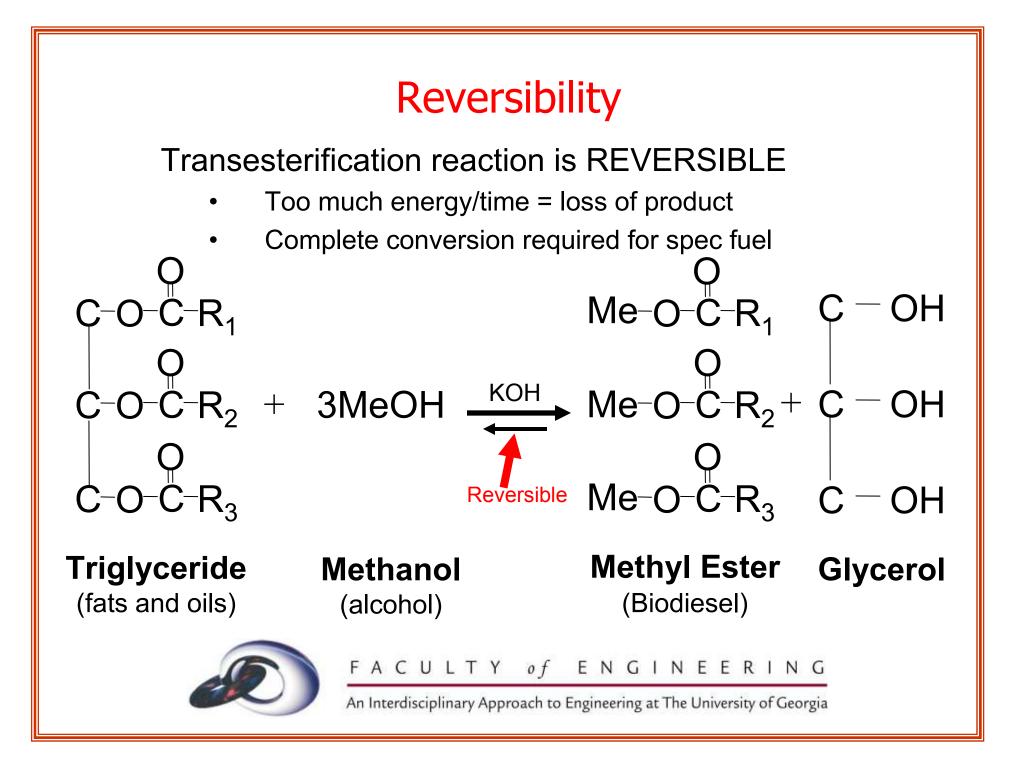
FACULTY of ENGINEERING

Fuel Quality and Uses

- ASTM D6751 Spec Grade Biodiesel
 - Industrial production
 - Retail Sale
 - Tax Incentives
 - Consumers
 - Legal, safe fuel
- High Quality Limited Use Fuel
 - Near compliance with key parameters of D6751
 - Must be diluted with petroleum diesel fuel
 - Limited Uses
 - Off Road
 - Municipal/Government
 - Personal

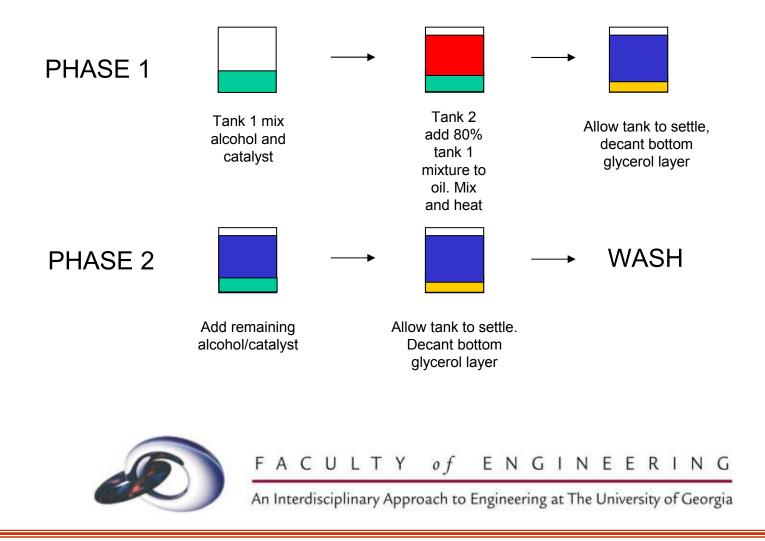
FACULTY of ENGINEERING

ASTM D6751 - Key Parameters


- Complete Reaction
 - Total Glycerine
 - Acid Number
- Adequate Washing
 - Free Glycerine
 - Flash Point
 - Alcohol Content
 - Water and Sediment

pHlip Test

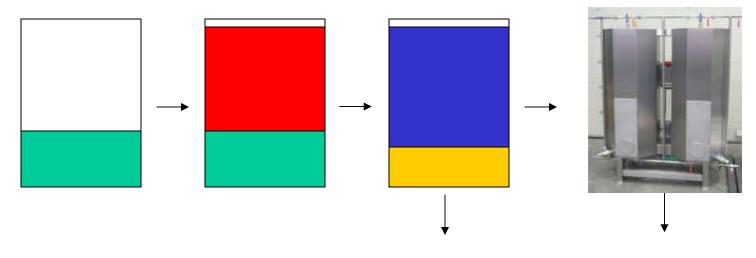
FACULTY of ENGINEERING



Incomplete Reaction

There are 3 fatty acids on each glycerine backbone. Incomplete reactions result in 1 or 2 of these remaining Remaining Components are mono- or di- glycerides Me-O-C-R $O - C - R_2 + 2MeOH$ Me-O-Ċ-ОН Triglyceride **Methanol** Methyl Ester Mono-(fats and oils) (Biodiesel) (alcohol) Glyceride FACULTY ENGINEERING of An Interdisciplinary Approach to Engineering at The University of Georgia

Two Phase Reaction


Basic chemical "trick" to push reaction to completion

Reversibility Explanation: Removal of one of the products pushes reaction to completion - Equilibrium $Me-O-C-R_1$ C-O-Č-R₁ O C-O-Č-R₂ + 3MeOH $\stackrel{\text{KOH}}{\longrightarrow}$ Me-O-C-R₂+ $Me-O-C-R_3$ Ò−R₂ **Methanol Methyl Ester** Triglyceride Glycerol (fats and oils) (Biodiesel) (alcohol) FACULTY of ENGINEERING An Interdisciplinary Approach to Engineering at The University of Georgia

Alternative option: Dry Wash

Hydrophilic resins absorb contaminants without use of water

Tank 1 mix alcohol and catalyst Tank 2 add tank 1 mixture to oil. Mix and heat Allow tank to settle, decant bottom glycerol layer Biodiesel is allowed to pass over column of hydrophilic resin

FACULTY of ENGINEERING

Waste Disposal

- Glycerine/Methanol/catalyst solution is caustic, toxic and flammable.
- Stories of "ready markets" abound on internet. – False
- Many biodiesel facilities have had to curtail production due to waste product accumulation

FACULTY of ENGINEERING

Waste Disposal

- Disposal options:
 - Landfill
 - Use as is
 - » Compost accelerant
 - » Boiler Fuel

- Methanol removal/neutralization
 - » Animal feed
- Methanol removal/neutralization/desalting
 - » Value added chemicals

FACULTY of ENGINEERING

Biodiesel Compatibility

- Uses existing diesel refueling infrastructure
- Biodiesel can be used with most existing vehicles without modification in blends or at 100%
- Biodiesel is *interchangeable* with diesel fuel – can use biodiesel one day and petroleum the next

FACULTY of ENGINEERING

Biodiesel Considerations

- Non-compatible with natural rubber hoses/seals
- Biodiesel solvent properties cleans fuel system = replacement of fuel filters
- <u>Cold Filter Plug Point is</u> higher in B100 – mixing with D2 compensates for elevated gel temperature

FACULTY of ENGINEERING

Daniel Geller dgeller@engr.uga.edu http://outreach.engineering.uga.edu/

FACULTY of ENGINEERING